Xroma - Two Years La
Progress Report

@ N Key Points
- ~ Just Remember This

- Software Development: Fighting Moore's Law
- Complexity Grows by Moore's Law, Tools Don't
* This Impacts Our Daily Lives: Bugs, Costs, Complexity
* Proposal: "Concept Programming”
* WYSIWYG Philosophy of Programming
- Need a Revolution in Development Tools
- Continuous Effort, Many Results

« Xroma, LX: Cool Ideas
* Mozart, Moka: Infrastructure, First Usable Tools
- XL: State of the Art

@\ Problem Statement
=" Why Waste My Time?

» Software Grows Too Fast
- Complexity Follows Moore's Law
* Increased Business Pressure - "Time To Market”
* No Incremental Growth of Development Tools
» Tools Grow Discontinuously - "Paradigm Shifts"
* Last Big Two: Java (Internet) and C++ (GUT)
* Direct Impact on Our Lives

- Software is Always Late
- Software is Always Buggy

Explosive Growth
= The Initial Stage

- Linux Kernel Growth

20,000,000

18,000,000
16,000,000 \\\-

14,000,000 +— - Development releases (1.1, 1.3, 2.1, 2.3) t\‘
—— Stable releases (1.0, 1.2, 2.0, 2.2) h\

12,000,000
10,000,000 \\\
8,000,000 \\H
6,000,000 iuh_\\.\x\t\\l

4,000,000 ‘vﬁ\\
2,000,000

0 T T T T T 1
Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul1998 Dec 1999 Apr 2001

Size in bytes

+ 1. Growth of the compressed tarx file for the full Linux kernel source release.

Source: http://plg.uwaterloo.ca/~migod/papers/icsm00.pdf

_ Reaching Saturation
~ Diminishing Returns

Normalised Size as Function of Normalised Cum. Modules Handled

S/S1 ~ (HH1Y(1/g
S/ (HHT)*(17g)

Source: http://www.doc.ic.ac.uk/~mml/feast2/papers/pdf/jfr103c.pdf

@\ Concept Programmin
=" Old Ideas, New Spin

- Code Should Represent Application Concepts
* Map Domain Space to Code Space
* Necessary and Sufficient Level of Abstractions
* Minimize "Artificial Complexity”
* Enable Ecosystems of Concepts
- Transposition of Application Domain Ecosystem

* Example: OO Methodology

- Objects Represent "Names”
* Methods Represent "Verbs”

@ N Simple Concept

—" >~ A General "Max" Function i

generic type ordered if
with ordered A, B
with boolean Test := A <B

function Max(ordered X) return ordered is
return X

function Max(ordered X, other) return ordered is
result := Max(other)
if result < X then result := X

procedure Test() is
with real R := Max(1.0, 3.0, 5.0)
with integer I := Min(1, 3, 4, 5, 6, -1)

@\ Concepts # Object.
=" Object-Oriented "Max

#include <iostream>
using namespace std;

template<class T>
class Maximum {
private:
T max;
public:
Maximum(T X) { max =X }
Maximum &operator,(T X) {
if (X > max)
max = X
return *this;
}
operator T() {
return max;

}
1

template <class T>
Maximum<T> Max(T t) {
return Maximum<T>(t);

}

int main() {
cout << "Max(2,8,5,7)="
<< (Max(3),8,5,7)
<< endl;
cout << "Max(2.5,8.2,5.1,7.3)="
<< (Max(2.5),8.2,5.1,7.3)
<< endl;

@ _ What Have We Gaine

=" ~ Not Just Incremental Benef

g

*Less "Artificial Complexity”
* No Need for Intermediate "Maximum" Manager Object
* No Comma Operator Overloading
* Less Punctuation

* More Safety

* "Ordered” Validates its Arguments
* Type-Safe Variable Argument Lists - WritelLn

* More Expressive Power
* The Right Level of Abstraction

@\ Expression Reducti

= = Operator Overloading++

* Reduction of Function Calls
function MultiplyAndAdd(matrix A, B, C) return matrix
written A * B+C
matrix M := M1 * M2 + M3 * M4 + M5

* Reduction of Generic Types

generic [type item] type pointer written pointer to item
pointer P to item

- Reduction of Constructors

generic [type item] function vector(integer Size)
return vector of item
written vector[Size] of integer

vector V[3] of integer

@ B True Generics
- ~ For a Better STL

» Standalone (non parameter) Generic Types

generic type ordered
function Max(ordered A) return ordered

* Declare a Real Concept
- C++: Convention on Template Argument Names

- Validation Clauses

generic type ordered if
with ordered A, B
with boolean C := A<B

* Model a Real Concept
* Enhance Robustness, Enable Diagnostics

@\ Improving Performan

Abstraction z IEfficiency

* Giving Information to the Compiler
- Avoiding "Noisy"” Semantics, such as Implicit Pointers

- Keeping Freedom of Implementation
void DrawRect(Rect *r);

* "Complex Numbers" Core Code (Julia Sets)

« 70% faster than C++ on Itanium
* Major Benefit: Everything in Registers
« XL is 7x Faster if C++ uses <iostream>

@\ Improving Performa

No Loss in Abstraction

type complex is record with
real Re, Im

function Complex(real Re, Im := 0.0) return complex is
result.Re := Re
result.Im :=Im

function Add(complex X, Y) return complex written X+Y is
result.Re := X.Re + Y.Re
result.Im := X.Im + Y.Im

_ Higher-Order Conce

“ ="~ Example: Symbolic Deriva

N

- Here is What You'd Like to Write

class Test

{
public static final double omega = 3.276;
public static final double theta = 0.227;
public static final double decay = 1.447E-3;

public static int main(String args[]) {

// Tabulate the following expression

for (double t = 0.0; t < 50.0; t += 0.01) {
double y = d(Math.sin(2 * omega * t + theta) * Math.exp(-decay * t))/dt;
System.out.println("t="+t + ", y="+y);

}

return O;

}
}

_Language Extensio
= = Moka External Plug-ins

ddd% ./moka tests/derivation.java +derivation +constantfold -out
/* Generated by Moka using moka.stylesheet */
// This example demonstrates the symbolic derivation "plugin"
class Test
{

public static final double omega = 3.276;

public static final double theta = 0.227;

public static final double decay = 0.001447; . > *u_..._mln_”3 S_._.—s. L.OL.
Hﬁuc,ozo static int main(String[] args) _\:_N So .—u ﬁO Q e

// Tabulate the following expression AﬁOS\:\SN:._.NQv
for(double t = 0; t < 50; t += 0.01)
{
double y = Math.cos (2 * omega * t + theta) * (2 * omega) * Math.exp
(-(decay * t)) + Math.sin (2 * omega * t + theta)
* -(Math.exp (-(decay * t)) * decay);
System.out.println ("t="+t +", y=" +y);
}

return O;

)

@\ How Moka Works

=~ Mozart API - Persistent

- Separation of Concerns
* Moka: Parsing and Unparsing Java Code
* Mozart: Program Representation and Persistence
* Plug-In: Derivatives

Moka Parser Moka Renderer

.L._n - _r\ / (" Database

@\ Other Applications
="~ A few existing Moka Plug-I

- Symbolic Derivation

- Constant Folding and Simplification

* Programming by Contract

- Stripping Selected Code (debug code, tracing)
* Generating Execution Traces ("profiling")

@\ mngm:m\.o:mn?.m\mnw
=" Philosophy Conflict

- Concept Abstractions That You can't even Read

* One Dialect Per Developer - Best Case
* Non Obvious Boundaries
- Hidden External Dependencies (found in Command Line)

- Still Worth Fixing

* More than Incremental Increase in Abstraction
* General Manipulation of Tree

@ N XL Pragmas
- = Escape Codes

* Non-Invasive Pragma Notation

for t in 0.0..50.0 step 0.01 loop
{derivation} real Y := d(sin(2 *omega *t+theta) *
exp(-decay *t))/dt
WriteLn “t=",t, “y=",y

- Fix Dialect Issues

* Make Use of Extensions Visible
* Pragma Name Indicates Dependency
* Ensure Locality of Pragma Effects

@\ Unlimited Capabilitie

= = "Revolution”

* Implementation Details
- {by_value}, {bit_size}, {address}, {volatile}, {debug}
* Optimizations
- {inline}, {fast}, {commutative}
* Object Models
- {C "bcopy"}, {dynamic}, {persistent}, {clonable}
* Foreign Paradigms
- {task}, {prolog}
* Custom-Defined
- {derivation}, {warn "Obsoletel!"}, {doc "This is a function"}

@ _ Modelling Tasking
~ ="~ Ada-Like Syntax... Library-

N

{protected} record Buffer with
{entry} function Count() return unsigned
{entry} function Available() return unsigned
when Count() > O:
{entry} procedure Read(out character C)
when Available() > O:
{entry} procedure Write(in character C)

// Producing task
task Producer is
with character C
loop
C := ProduceCharacter()
Buffer.Write C
exit if C = ASCIL.EOT

@ N Progress Report
- ~ Summary of Results

* Mozart - The Foundations
* Language-Independant Intermediate Language
- Extensible, Reversible, Persistent
* Moka - Java to Java Compiler
* Parser and Unparser
- Java Extensions using Compiler Plug-Ins
* XL Compiler

* Supports "Concept Programming”
« More Efficient than C / C++ on Modern Processors

BNRttp.//mozart-dev.sf.net

@ N Key Points
- =~ Just Remember This

- Software Development: Fighting Moore's Law
- Complexity Grows by Moore's Law, Tools Don't
* This Impacts Our Daily Lives: Bugs, Costs, Complexity
* Proposal: "Concept Programming”
» WYSIWYG Philosophy of Programming
* Need a Revolution in Development Tools
- Continuous Effort, Many Results

« Xroma, LX: Cool Ideas
* Mozart, Moka: Infrastructure, First Usable Tools
- XL: State of the Art

